Back to basics
Consider the following data in tidy format:
simple_ex <-
data_frame(
A = c(1980, 1990, 2000, 2010),
B = c(1, 2, 4, 5),
C = c(3, 2, 1, 2),
D = c("low", "low", "high", "high")
)
simple_ex
- Sketch the graphics below on paper, where the
x
-axis is variable A
and the y
-axis is variable B
- A scatterplot
- A scatterplot with fitted least-squares regression line
Intermediate folks:
- A scatter plot where the
color
of the points corresponds to D
and the size
of the points corresponds to C
- Only show a regression line of color “goldenrod” (no points and also no error bounds)
- A scatterplot
ggplot(data = simple_ex, mapping = aes(x = A, y = B)) +
geom_point()
- A scatterplot with fitted least-squares regression line
ggplot(data = simple_ex, mapping = aes(x = A, y = B)) +
geom_point() +
geom_smooth(method = "lm")
Intermediate
- A scatter plot where the
color
of the points corresponds to D
and the size
of the points corresponds to C
ggplot(data = simple_ex, mapping = aes(x = A, y = B)) +
geom_point(mapping = aes(color = D, size = C))
- Only show a regression line of color “goldenrod” (no points and also no error bounds)
ggplot(data = simple_ex, mapping = aes(x = A, y = B)) +
geom_smooth(method = "lm", se = FALSE, color = "goldenrod")
Your Task
Recreate the gapminder plot shown at the beginning of this workshop (and below) using ggplot2
and the gapminder
data frame in the gapminder
package. The Data Visualization Cheat Sheet from RStudio may be helpful.
Note: To focus on only the rows in the data frame corresponding to 1992 we use the filter
function from dplyr
that we will discuss in Part 3 of this workshop/book.
eyJsYW5ndWFnZSI6InIiLCJzYW1wbGUiOiJsaWJyYXJ5KGdhcG1pbmRlcilcbmxpYnJhcnkoZHBseXIpXG5saWJyYXJ5KGdncGxvdDIpXG5nYXAxOTkyIDwtIGdhcG1pbmRlciAlPiUgZmlsdGVyKHllYXIgPT0gMTk5MilcblxuI1NwYWNlIGZvciB5b3VyIGFuc3dlciBoZXJlLiIsInNvbHV0aW9uIjoibGlicmFyeShnYXBtaW5kZXIpXG5saWJyYXJ5KGRwbHlyKVxubGlicmFyeShnZ3Bsb3QyKVxuZ2FwMTk5MiA8LSBnYXBtaW5kZXIgJT4lIGZpbHRlcih5ZWFyID09IDE5OTIpXG5nZ3Bsb3QoZGF0YSA9IGdhcDE5OTIsXG4gICAgICAgbWFwcGluZyA9IGFlcyh4ID0gbG9nKGdkcFBlcmNhcCwgYmFzZSA9IDEwKSwgXG4gICAgICAgICAgICAgICAgICAgICB5ID0gbGlmZUV4cCwgXG4gICAgICAgICAgICAgICAgICAgICBjb2xvciA9IGNvbnRpbmVudCxcbiAgICAgICAgICAgICAgICAgICAgIHNpemUgPSBwb3ApKSArXG4gIGdlb21fcG9pbnQoKSArIFxuICB4bGFiKFwiR3Jvc3MgRG9tZXN0aWMgUHJvZHVjdCAobG9nIHNjYWxlKVwiKSArIFxuICB5bGFiKFwiTGlmZSBFeHBlY3RhbmN5IGF0IGJpcnRoICh5ZWFycylcIikgKyBcbiAgZ2d0aXRsZShcIkdhcG1pbmRlciBmb3IgMTk5MlwiKSIsInNjdCI6IiNkZXZ0b29sczo6aW5zdGFsbF9naXRodWIoXCJkYXRhY2FtcC90ZXN0d2hhdFwiKVxudGVzdF9saWJyYXJ5X2Z1bmN0aW9uKFwiZ2FwbWluZGVyXCIpXG50ZXN0X2xpYnJhcnlfZnVuY3Rpb24oXCJkcGx5clwiKVxudGVzdF9saWJyYXJ5X2Z1bmN0aW9uKFwiZ2dwbG90MlwiKVxudGVzdF9vYmplY3QoXCJnYXAxOTkyXCIpXG50ZXN0X29yKHtcbiAgIyBtYXRjaCBvcmlnaW5hbCBzb2x1dGlvblxuICBnZ3Bsb3RfZnVuIDwtIGV4KCkgJT4lIGNoZWNrX2Z1bmN0aW9uKFwiZ2dwbG90XCIpXG4gIGdncGxvdF9mdW4gJT4lIGNoZWNrX2FyZyhcImRhdGFcIikgJT4lIGNoZWNrX2VxdWFsKGV2YWwgPSBGQUxTRSlcbiAgZ2dwbG90X2Z1biAlPiUgY2hlY2tfYXJnKFwibWFwcGluZ1wiKVxuICBhZXNfZnVuIDwtIGV4KCkgJT4lIGNoZWNrX2Z1bmN0aW9uKFwiYWVzXCIpXG4gIGFlc19mdW4gJT4lIGNoZWNrX2FyZyhcInhcIikgJT4lIGNoZWNrX2VxdWFsKGV2YWwgPSBGQUxTRSlcbiAgYWVzX2Z1biAlPiUgY2hlY2tfYXJnKFwieVwiKSAlPiUgY2hlY2tfZXF1YWwoZXZhbCA9IEZBTFNFKVxuICBhZXNfZnVuICU+JSBjaGVja19hcmcoXCJjb2xvclwiKSAlPiUgY2hlY2tfZXF1YWwoZXZhbCA9IEZBTFNFKVxuICBhZXNfZnVuICU+JSBjaGVja19hcmcoXCJzaXplXCIpICU+JSBjaGVja19lcXVhbChldmFsID0gRkFMU0UpXG4gIGV4KCkgJT4lIGNoZWNrX2Z1bmN0aW9uKFwiZ2VvbV9wb2ludFwiKVxuICBleCgpICU+JSBjaGVja19mdW5jdGlvbihcInhsYWJcIilcbiAgZXgoKSAlPiUgY2hlY2tfZnVuY3Rpb24oXCJ5bGFiXCIpXG4gIGV4KCkgJT4lIGNoZWNrX2Z1bmN0aW9uKFwiZ2d0aXRsZVwiKVxufSwge1xuICAjIG1hdGNoIGFsdCBzb2x1dGlvbjpcbiAgc29sX2FsdF9jb2RlIDwtICdnZ3Bsb3QoZGF0YSA9IGdhcDE5OTIsXG4gICAgICAgbWFwcGluZyA9IGFlcyh4ID0gbG9nKGdkcFBlcmNhcCwgYmFzZSA9IDEwKSxcbiAgICAgICAgICAgICAgICAgICAgIHkgPSBsaWZlRXhwKSkgK1xuICBnZW9tX3BvaW50KG1hcHBpbmcgPSBhZXMoY29sb3IgPSBjb250aW5lbnQsXG4gICAgICAgICAgICAgICAgICAgICBzaXplID0gcG9wKSkgK1xuICB4bGFiKFwiR3Jvc3MgRG9tZXN0aWMgUHJvZHVjdCAobG9nIHNjYWxlKVwiKSArXG4gIHlsYWIoXCJMaWZlIEV4cGVjdGFuY3kgYXQgYmlydGggKHllYXJzKVwiKSArXG4gIGdndGl0bGUoXCJHYXBtaW5kZXIgZm9yIDE5OTJcIiknXG4gIGFsdF9leCA8LSBleCgpICU+JSBvdmVycmlkZV9zb2x1dGlvbihzb2xfYWx0X2NvZGUpXG5cbiAgZ2dwbG90X2Z1biA8LSBhbHRfZXggJT4lIGNoZWNrX2Z1bmN0aW9uKFwiZ2dwbG90XCIpXG4gIGdncGxvdF9mdW4gJT4lIGNoZWNrX2FyZyhcImRhdGFcIikgJT4lIGNoZWNrX2VxdWFsKGV2YWwgPSBGQUxTRSlcbiAgZ2dwbG90X2Z1biAlPiUgY2hlY2tfYXJnKFwibWFwcGluZ1wiKVxuICBhZXNfZnVuIDwtIGFsdF9leCAlPiUgY2hlY2tfZnVuY3Rpb24oXCJhZXNcIilcbiAgYWVzX2Z1biAlPiUgY2hlY2tfYXJnKFwieFwiKSAlPiUgY2hlY2tfZXF1YWwoZXZhbCA9IEZBTFNFKVxuICBhZXNfZnVuICU+JSBjaGVja19hcmcoXCJ5XCIpICU+JSBjaGVja19lcXVhbChldmFsID0gRkFMU0UpXG4gIGdlb21fcG9pbnRfZnVuIDwtIGFsdF9leCAlPiUgY2hlY2tfZnVuY3Rpb24oXCJnZW9tX3BvaW50XCIpXG4gIGdlb21fcG9pbnRfZnVuICU+JSBjaGVja19hcmcoXCJtYXBwaW5nXCIpXG4gIGFsdF9leCAlPiUgY2hlY2tfZnVuY3Rpb24oXCJhZXNcIiwgaW5kZXggPSAyKSAlPiUgY2hlY2tfYXJnKFwiY29sb3JcIikgJT4lIGNoZWNrX2VxdWFsKGV2YWwgPSBGQUxTRSlcbiAgYWx0X2V4ICU+JSBjaGVja19mdW5jdGlvbihcImFlc1wiLCBpbmRleCA9IDIpICU+JSBjaGVja19hcmcoXCJzaXplXCIpICU+JSBjaGVja19lcXVhbChldmFsID0gRkFMU0UpXG4gIGFsdF9leCAlPiUgY2hlY2tfZnVuY3Rpb24oXCJ4bGFiXCIpXG4gIGFsdF9leCAlPiUgY2hlY2tfZnVuY3Rpb24oXCJ5bGFiXCIpXG4gIGFsdF9leCAlPiUgY2hlY2tfZnVuY3Rpb24oXCJnZ3RpdGxlXCIpXG59KVxuIyBGb3Igc29tZSByZWFzb24sIHRoZSBzdWNjZXNzIG1lc3NhZ2UgaXNuJ3QgYXBwZWFyaW5nP1xuc3VjY2Vzc19tc2coXCJOaWNlISBZb3VyIGNvZGUgcHJvZHVjZXMgdGhlIHBsb3Qgc2hvd24uXCIpXG50ZXN0X2Vycm9yKCkifQ==